Bayesian Dynamic Tensor Regression

نویسندگان

چکیده

High- and multi-dimensional array data are becoming increasingly available. They admit a natural representation as tensors call for appropriate statistical tools. We propose new linear autoregressive tensor process (ART) tensor-valued data, that encompasses some well-known time series models special cases. study its properties derive the associated impulse response function. exploit PARAFAC low-rank decomposition providing parsimonious parameterization develop Bayesian inference allowing shrinking effects. apply ART model to of multilayer networks propagation shocks across nodes, layers time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Tensor Regression

We propose a Bayesian approach to regression with a scalar response on vector and tensor covariates. Vectorization of the tensor prior to analysis fails to exploit the structure, often leading to poor estimation and predictive performance. We introduce a novel class of multiway shrinkage priors for tensor coefficients in the regression setting and present posterior consistency results under mil...

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Dynamic Bayesian Information Measures

This paper introduces measures of information for Bayesian analysis when the support of data distribution is truncated progressively. The focus is on the lifetime distributions where the support is truncated at the current age t>=0. Notions of uncertainty and information are presented and operationalized by Shannon entropy, Kullback-Leibler information, and mutual information. Dynamic updatings...

متن کامل

Tensor Contraction&Regression Networks

To date, most convolutional neural network architectures output predictions by flattening 3rd-order activation tensors, and applying fully-connected output layers. This approach has two drawbacks: (i) we lose rich, multi-modal structure during the flattening process and (ii) fully-connected layers require many parameters. We present the first attempt to circumvent these issues by expressing the...

متن کامل

Bayesian Inference for Generalized Additive Regression based on Dynamic Models

We present a general approach for Bayesian inference via Markov chain Monte Carlo MCMC simulation in generalized additive semiparametric and mixed models It is particularly appropriate for discrete and other fundamentally non Gaussian responses where Gibbs sampling techniques developed for Gaussian models cannot be applied We use the close relation between nonparametric regression and dynamic o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Business & Economic Statistics

سال: 2022

ISSN: ['1537-2707', '0735-0015']

DOI: https://doi.org/10.1080/07350015.2022.2032721